Novel Methods for Ambient Noise Tomography

Andrew Curtis

Xin Zhang, Stephanie Earp Sjoerd de Ridder^{*}, Ruicun Cao, Erica Galetti

University of Edinburgh

*now at University of Leeds

Introduction

→ Bayesian Nonlinear Ambient Noise Tomography in Near-Real Time

Introduction

→ Bayesian Nonlinear Ambient Noise Tomography in Near-Real Time

Introduction **Family** of plausible models -> Bayesian Nonlinear Ambient Noise Tomography in Near-Real Time "Assume the Physics in linear..." **Non**linearity is your friend : **Coding is easier** – no derivatives! **Family** of plausible models **→ smaller**

Real-time applications

- Monitoring induced seismicity/deformation
- Earthquake/volcano early warning
- Subsurface leak/pollution detection
- Rolling arrays

Academic Challenge **→ new methods** for other science & technology

Introduction

Bayesian Nonlinear Ambient Noise Tomography in Near-Real Time

This is possible! (or at least is a reasonable goal)

➔ Generalised Novel Methods for Geophysical Inversion

Bayesian Inference/Inversion

Bayes' theorem

Talk Plan

- Dense Array Ambient Noise Tomography
- → Sparse Array Ambient Noise Tomography
- → Bayesian Nonlinear tomography in near-real time is possible!
- → Generalised methods to estimate probabilities

Ocean Bottom Cables

Ekofisk

Thank you to Ekofisk Field partners: equinor, Petoro, Eni, ConocoPhillips, Total

de Ridder & Biondi (2015)

Ocean Bottom Cables

Ekofisk OBC Array

de Ridder & Biondi (2015)

Ambient Seismic recorded by OBC

Seismic Noise

de Ridder & Biondi (2015)

Ambient Seismic recorded by OBC

Wavefield Amplitudes (-)

Seismic Noise

Dispersion

de Ridder & Biondi (2015)

 $\partial^2 U(t, \mathbf{x}) = c^2(x) \nabla^2 U(t, \mathbf{x})$

Seismic Gradiometry – Curtis & Robertsson (2002)

Seismic Noise

Dispersion

de Ridder & Biondi (2015)

 $\partial^2 U(t, \mathbf{x}) = c^2(x) \nabla^2 U(t, \mathbf{x})$

Isotropic

(De Ridder and Biondo, 2015)

Anisotropic

(De Ridder and Curtis, 2017)

 $\partial^2 U(t, \mathbf{x}) = c^2(x) \nabla^2 U(t, \mathbf{x})$

Isotropic

(De Ridder and Biondo, 2015)

Repeat at each frequency

Seismic Gradiometry

(De Ridder and Biondo, 2015)

(De Ridder and Curtis, 2017)

Mordret et al. (2012 – 2015)

Seismic Surface Wave Tomography : typical workflow

Seismic Surface Wave Tomography : typical workflow

Neural Networks

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. B4, PAGES 6753-6768, APRIL 10, 1994

Neural networks and inversion of seismic data

Gunter Röth and Albert Tarantola Institut de Physique du Globe de Paris, Paris, France

Neural networks can be viewed as applications that map one space, the input space, into some output space. In order to simulate the desired mapping the network has to go through a learning process consisting of an iterative change of the internal parameters, through the presentation of many input patterns and their corresponding output patterns. The training process is accomplished if the error between the computed output and the desired output pattern is minimal for all examples in the training set. The network will then simulate the desired mapping on the

Neural Networks

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B12, PAGES 28,841–28,857, DECEMBER 10 1999

An efficient, probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness

R.J.R. Devilee, A. Curtis,¹ and K. Roy-Chowdhury

Geodynamic Research Institute, Department of Geophysics, Utrecht University, the Netherlands

Abstract. Nonlinear inverse problems usually have no analytical solution and may be solved by Monte Carlo methods that create a set of samples, representative of the a posteriori distribution. We show how neural networks can be trained on these samples to give a continuous approximation to the inverse relation in a compact and computationally efficient form. We examine the strengths and weaknesses of

Neural Network

elu(x)

Neural Network

Neural Network

or any other network structure (GAN's, recursive, convolutional, etc.)

Mixture Density Network

• Standard Neural Network (NN) gives no uncertainty information

• Parameterise uncertainty using mixture densities (MDN)

Mixture Density Network

$$p(\mathbf{m}) = \sum_{k=1}^{M} \alpha_k(\mathbf{d}) \Theta_k(\mathbf{m} | \mathbf{d})$$

0

0.5

1 1.5 V_s (km/s) 2.5 2

Forward Model

Forward Model

Field over a Landfill dump near the Edinburgh Ring-Road

Phase Velocity Maps from Gradiometry

- **Step 1**: construct *m* x 2D phase/group velocity maps
- **Step 2**: 1D depth inversion at each grid point Repeat for *n* grid points \rightarrow 3D model
- **Decomposition**: 3D tomog = *m* x 2D + *n* x 1D tomog's

- **Step 1**: construct *m* x 2D phase/group velocity maps
- **Step 2**: 1D depth inversion at each grid point Repeat for *n* grid points \rightarrow 3D model
- **Decomposition**: 3D tomog = *m* x 2D + *n* x 1D tomog's \rightarrow

- **Step 1**: construct *m* x 2D phase/group velocity maps
- **Step 2**: 1D depth inversion at each grid point Repeat for *n* grid points \rightarrow 3D model
- **Decomposition**: 3D tomog = *m* x 2D + *n* x 1D tomog's \rightarrow

Step 2

- **Step 1**: construct *m* x 2D phase/group velocity maps
- **Step 2**: 1D depth inversion at each grid point Repeat for *n* grid points \rightarrow 3D model
- **Decomposition**: 3D tomog = *m* x 2D + *n* x 1D tomog's \rightarrow

Mixture Density Network (MDN)

Training Set

• Sample prior model distribution

- 2.5 million models
 - 8x8 model
 - 16x16 model

• Convolutional networks

EAGE Abstract + arXiv: Earp & Curtis, 2019

Smooth Prior

EAGE Abstract + arXiv: Earp & Curtis, 2019

EAGE Abstract + arXiv: Earp & Curtis, 2019

- **Step 1**: construct *m* x 2D phase/group velocity maps
- **Step 2**: 1D depth inversion at each grid point Repeat for *n* grid points \rightarrow 3D model
- **Decomposition**: 3D tomog = *m* x 2D + *n* x 1D tomog's \rightarrow

Near-Real Time 3D Tomography

• Bayesian Nonlinear Ambient Noise Tomography in near-real time

• This is possible! (or at least is a reasonable goal)

Real-time applications

- ➔ Monitoring induced seismicity/deformation
- ➔ Earthquake/volcano early warning
- ➔ Subsurface leak/pollution detection
- ➔ Rolling Arrays

Achieved by **OPTIMISATION**

Near-Real Time 3D Tomography

• Bayesian Nonlinear Ambient Noise Tomography in near-real time

• This is possible! (or at least is a reasonable goal)

• Generalised methods – (hardly investigated in Geophysics)

Generalised **Optimisation** for Probability Distributions

- Variational Bayesian Inference
- Synthetic tests
- Application to Grane array data

arXiv: Zhang & Curtis, 2019

Variational Inference

Bayesian solution

$$p(\mathbf{m}|\mathbf{d}) = \frac{p(\mathbf{d}|\mathbf{m})p(\mathbf{m})}{p(\mathbf{d})}$$

d=data, **m**=parameters

- Variational methods replace **stochastic sampling** with **optimisation** of functions
- Strategy 1: fit semi-analytic functions to $p(\mathbf{m}|\mathbf{d})$
 - Choose family of functions $q(\mathbf{m}, \varphi)$, φ =parameters
 - [c.f. φ =Gaussian mean & covar]

- Optimise φ s.t. $q(\mathbf{m}|\varphi) \cong p(\mathbf{m}|\mathbf{d})$
- Define a measure of difference between q and p; then minimize it.
- Strategy 2: generate a set of samples of $p(\mathbf{m}|\mathbf{d})$ by optimisation *arXiv: Zhang & Curtis, 2019*

Variational Inference

• Kullback-Liebler divergence measures difference between q and p:

 $KL[q||p] = E_{q(\mathbf{m})}[\log q(\mathbf{m}|\varphi)] - E_{q(\mathbf{m})}[\log p(\mathbf{m}|\mathbf{d})] + \log p(\mathbf{d})$

•
$$KL \ge 0$$
 and $KL = 0$ when $q = p$. Rearrange...

log(evidence) : constant w.r.t. q

log(evidence) : intractable

 $KL[q||p] + E_{q(\mathbf{m})}[\log p(\mathbf{m}|\mathbf{d})] - E_{q(\mathbf{m})}[\log q(\mathbf{m}|\varphi)] = \log p(\mathbf{d})$

• Evidence lower bound (ELBO) Bayes Rule, prior, likelihood

→ Efficient, case-specific analytical methods (Nawaz & Curtis 2018/19)

$$ELBO(q) = E_{q(\mathbf{m})}[\log p(\mathbf{m}|\mathbf{d})] - E_{q(\mathbf{m})}[\log q(\mathbf{m}|\varphi)]$$

Expectations w.r.t. q which we choose

 \rightarrow Maximise ELBO \rightarrow minimises KL divergence (difference) between q and p.

Automatic Differential Variational Inference (ADVI)

- Transform constrained parameter **m** to real space: $\mathbf{\theta} = T(\mathbf{m})$
- In transformed space assume a Gaussian distribution: $q(\mathbf{\theta}; \varphi) = Normal(\mathbf{\theta} | \mathbf{\mu}, \mathbf{L}\mathbf{L}^T)$
- Standardize the normal distribution: $\mathbf{\eta} = S_{\varphi}(\mathbf{\theta})$ $q(\mathbf{\eta}) = Normal(\mathbf{\eta}|\mathbf{0}, \mathbf{I})$
- Gradient of ELBO \mathcal{L} can be calculated:

 $\nabla_{\mu}\mathcal{L} = \overline{E_{N(\eta)}} \left[\nabla_{\mathbf{m}} \log p(\mathbf{d}, \mathbf{m}) \nabla_{\theta} T^{-1}(\mathbf{\theta}) + \nabla_{\theta} \log |\det \mathbf{J}_{T^{-1}}(\mathbf{\theta})| \right]$ $\nabla_{\mathbf{L}}\mathcal{L} = \overline{E_{N(\eta)}} \left[\nabla_{\mathbf{m}} \log p(\mathbf{d}, \mathbf{m}) \nabla_{\theta} T^{-1}(\mathbf{\theta}) + \nabla_{\theta} \log |\det \mathbf{J}_{T^{-1}}(\mathbf{\theta})| \mathbf{\eta}^{T} \right] + (\mathbf{L}^{-1})^{T}$ Expectations calculated by MC. But sampling N(0,1) \rightarrow low number of samples (even 1) • Maximize ELBO \mathcal{L} using gradient ascent

Automatic Differential Variational Inference (ADVI)

Transform

 $\theta_i = \log(m_i - a) - \log(b - m_i)$ where *a* and *b* are lower and upper bounds

Variational Inference based on Invertible Transforms

• Approximate posterior *p* using a series of transforms:

$$q_n = T_n \cdots T_1 T_0(q_0)$$

- Optimize transform T_i by minimizing KL divergence.
- Normalizing flow, Stein variational methods, etc.

Stein Variational Gradient Descent(SVGD)

• Assume a transformation $T(\mathbf{m}) = \mathbf{m} + \epsilon \phi(\mathbf{m})$

$$\nabla_{\epsilon} KL[q_{[T]}||p]|_{\epsilon=0} = -E_{\mathbf{m}\sim q}[trace(A_{p}\phi(\mathbf{m}))]$$

where $A_{p}\phi(\mathbf{m}) = \nabla_{\mathbf{m}}\log p(\mathbf{m}|\mathbf{d})\phi(\mathbf{m})^{T} + \nabla_{\mathbf{m}}\phi(\mathbf{m})$

SAMPLES

Standard gradients (as used in linearised inversion)

• ϕ^* that maximize the negative gradient:

$$\phi_{q,p}^{*}(\mathbf{m}) = E_{\mathbf{m}' \sim q}[k(\mathbf{m}', \mathbf{m})\nabla_{\mathbf{m}'}\log p(\mathbf{m}'|\mathbf{d}) + \nabla_{\mathbf{m}'}k(\mathbf{m}', \mathbf{m})]$$

where k is a kernel, e.g. a RBF kernel:

$$k(\mathbf{m}, \mathbf{m}') = \exp(-\frac{1}{h} ||\mathbf{m} - \mathbf{m}'||^2)$$
 Liu and Wang, 2016 arXiv

SVGD

Target probability

Histogram of particles

Try this: https://chi-feng.github.io/mcmc-demo/app.html

Synthetic tests

Reversible jump McMC

True model

Mean

Stdev

Parameterized by Voronoi cells

Reversible jump McMC

Parameterized by Voronoi cells

ADVI results

Parameterized by a 21*21 grid

SVGD results

Parameterized by a 21*21 grid

Metropolis-Hastings McMC

True model Mean Stdev 2.50 - 2.50 0.700 4 -4 -2.25 - 2.25 0.675 Δ - 2.00 - 2.00 2 -2 -(s) - 1.75 - 1.75 - 1.75 (s/ - 1.50 - 1.50 - 1.50 - 1.50 - 1.25 - 1.2 0.650 Y(km) velocity (0.625 Y(km) 0 · 0 0.600 - 1.25 und Weight - 0.575 -2 -- 0.550 --2 --1.00 - 1.00 - 0.75 - 0.75 0.525 -4 --4 0.50 0.50 0.500 -2 2 -2 -2 -40 4 -4 0 2 4 -4 0 2 4 X(km) X(km) X(km)

(km/s)

iation

de

Idard

Parameterized by a 21*21 grid

Reversible jump McMC

True model

Mean

Stdev

Parameterized by Voronoi cells

Marginal distribution

Computational cost

Methods	Number of simulations	CPU hours	Real time (hours)
ADVI	10,000	0.45	0.45
SVGD	400,000	8.53	0.97
MH-McMC	12,000,000	410.3	68.4
Rj-McMC	3,000,000	102.6	17.1

Application to Grane field

346 receivers

35 virtual sources

ADVI

SVGD

500,000 forward modelling, 12.1 hours parallelized using 12 cores

rj-McMC

12,800,000 forward modelling, 5 days running on 16 cores

Summary

- Introduced two variational inference methods to seismic tomography
 - Automatic differential variational inference (ADVI)
 - Stein variational gradient descent (SVGD)
- Compared with Metropolis-Hastings and reversible jump McMC
 - Variational methods provide efficient alternatives to McMC
- Variational methods almost unexplored in Geophysics **Try them!**

→ FOR PAPERS ON ALL TOPICS SEE: www.ed.ac.uk/homes/acurtis
→ Or email Andrew.Curtis@ed.ac.uk