

LP Volcanic event, 31st July 2018

Detection using global seismic networks

Piero Poli University of Grenoble

PASSIVE IMAGING AND MONITORING IN WAVE PHYSICS: FROM SEISMOLOGY TO ULTRASOUND Cargese, September 16-20, 2019

Massimment

- Motivation
- Global scale detection of seismic waves
- Improving preliminary detections
- Glacial Earthquakes & low frequency volcanic tremors
- Conclusions

Outline

Mummunh

- Motivation
- Global scale detection of seismic waves
- Improving preliminary detections
- Glacial Earthquakes & low frequency volcanic tremors
- Conclusions

European Research Counci Established by the European Commission

Outline

Motivation

- Are we detecting all earthquakes?
 - Are other signals existing?
- Signals are located and stored just if picking is possible

Data from 17 of June 2017

Correlation based detection

Motivation: Example of unidentified signals

Motivation: Example of unidentified signals

What if we do not have a reference signal? **Model templates**

Baggeroer, Kuperman & Schmidt, Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem (1988)

Rodgers, A., D. Harris, and M. Pasyanos. "A model-based signal processing approach to seismic monitoring." *Proceedings of 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies* (2006): 455-464.

See also Shearer (1994) & Ekstrom (2006)

Global scale detection of long period signals

24 hours

Global scale detection of long period signals

$$C_i = \sum_{j=1}^n \frac{X^j \cdot Y_i^j}{\sqrt{(X^j \cdot X^j)(Y_i^j \cdot Y_i^j))}}$$

 $CN(t) = max[C_i(t)]$

SEISMIC NETWORKS (2001-2019):

- GEOSCOPE (G)
- GEOFON (GE)
- Global Seismograph Network (GSN IRIS/IDA, II)
- Global Seismograph Network (GSN IRIS/USGS, IU)

DATA PROCESSING:

- Remove instr. response
- Resample 0.5Hz
- Filter 0.01-0.05Hz (high signal-to-noise ratio (SNR) in the frequency band (Shearer 1994; Ekstrom 2006; McGuire 2008))

 $CN(t) = max[C_i(t)]$

Detections = CN>4std(CCC)

One year of detection

De-clustering new "events": Max coherence per ~1000sec (template length) TOTAL NUMBER OF DETECTIONS: ~100000 in 19 years

Remove known earthquakes:

- Remove detections within ±1 hour and <20deg from known M4+
 - Remove antipodal detection (R2, R3)

2000 to 2019

The catalog after quality control:

610 unidentified signals

Global scale detection of long period signals

Source density

Global scale detection of long period signals

Surface waves magnitude (Nuttli, 1973)

Oceanic ridge events

Improving detection: full waveform matching

 $C_{i} = \sum_{j=1}^{n} \frac{X^{j} \cdot Y_{i}^{j}}{\sqrt{(X^{j} \cdot X^{j})(Y_{i}^{j} \cdot Y_{i}^{j}))}} \qquad \mathbf{X} = \mathbf{detected \ events}$

Greenland

- Empirical detection (25 events)
- Full waveform template matching (2620 events)

Greenland

- Empirical detection (24 events)
- Full waveform (2620 events)

Greenland: Spatiotemporal evolution

Greenland: Comparison with GRACE data

NO INVERSION / DIRECT OBSERVATION

INVERSION / DATA CORRECTION

Low frequency signals from deep oceans volcanoes

Low frequency volcanic tremors

Poli, Shapiro & Campillo (one day will be puslished!)

Low frequency volcanic tremors: Location

Lon

Poli, Shapiro & Campillo (one day will be puslished!)

Low frequency volcanic tremors: Full waveform detection

Search for repeaters:

-Template matching using the waveforms for the 31st of July events

-From 2018 to August of 2019

New detections

217 events

Low frequency volcanic tremors

Low frequency volcanic tremors: Spectral properties

Low frequency volcanic tremors: Source properties

Are these LFTs unique?

Conclusions (I)

- Preliminary search for signals is fast (one day one minute) and enrich earthquake catalogs
- Detections of signals beyond 'regular' earthquakes
- Primary detections for full waveform TM

Issues:

- Choice of detection function (better location/detection)
- Explore a larger frequency range
- Quality control of detections
- Relocation and depth resolution
- Separation of earthquakes from other signals

Conclusions (II)

Detected signals provide information about (geo)

physical processes

Catalog is open as it is the possibility to collaborate! piero.poli@univ-grenoble-alpes.fr

Conclusions (III)

THANKS

A FIXED VIEW POINT CAN BE A TRAP WHERE WE ONLY SEE WHAT WE ARE LOOKING FOR

(from Unflattened, Sousanis)

LP Volcanic event, 31st July 2018

- Empirical detection (24 events)
- Full waveform (2620 events)

