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Motivation

• Are we detecting all earthquakes?

• Are other signals existing?

• Signals are located and stored just 
if picking is possible
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Motivation: Example of unidentified signals

Poli (GRL, 2017)

Data from 17 of June 2017

No clear P or S waves -> No picking possible
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Motivation: Example of unidentified signals

Raw data

Coherence

Poli (GRL, 2017)

New information

Correlation based detection
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Motivation: Example of unidentified signals

Poli (GRL, 2017)

What if we do not have a reference signal?
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Motivation: Example of unidentified signals

Poli (GRL, 2017)

What if we do not have a reference signal?

ML
wait Friday L. Seydoux presentation

Generate signals from knowledge
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Motivation: Example of unidentified signals

What if we do not have a reference signal?
Model templates

Baggeroer, Kuperman & Schmidt, Matched field processing: Source 
localization in correlated noise as an optimum parameter estimation 

problem (1988)

Rodgers, A., D. Harris, and M. Pasyanos. "A model-based signal 
processing approach to seismic monitoring." Proceedings of 28th Seismic 

Research Review: Ground-Based Nuclear Explosion Monitoring 
Technologies (2006): 455-464.

See also Shearer (1994) & Ekstrom (2006)
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Global scale detection of long period signals
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Global scale detection of long period signals

TEMPLATES (X)
• PREM Rayleigh waves vel. @0.03Hz
• Gaussian window 

SEVERAL OTHER TEMPLATES TESTED

CN(t) =max[Ci (t)]
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Data

SEISMIC NETWORKS (2001-2019):

• GEOSCOPE (G)
• GEOFON (GE)
• Global Seismograph Network (GSN - IRIS/IDA, II) 
• Global Seismograph Network (GSN - IRIS/USGS, IU) 

DATA PROCESSING:

• Remove instr. response
• Resample 0.5Hz
• Filter 0.01-0.05Hz (high signal-to-noise ratio (SNR) 

in the frequency band (Shearer 1994; Ekstrom 2006; 
McGuire 2008))
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One year of detection

Detections = CN>4std(CCC)

Year 2001

Detection threshold

Noise

CN

CN(t) =max[Ci (t)]
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One year of detection

De-clustering new “events”:
Max coherence per ~1000sec (template length)

TOTAL NUMBER OF DETECTIONS: ~100000 in 19 years

CN
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One year of detection

Remove known earthquakes:
• Remove detections within ±1 hour and <20deg from known M4+

• Remove antipodal detection (R2, R3)

Year 2001

CN
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2000 to 2019

The catalog after quality control:

610 unidentified signals
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Global scale detection of long period signals

Source density

Num
ber of events per cell
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Global scale detection of long period signals

Surface waves magnitude (Nuttli, 1973)

B~1.3Ms=5

Ms=3.5
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Oceanic ridge events
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Improving detection: full waveform matching
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Greenland

25 sources Sample detection

• Empirical detection (25 events)

• Full waveform template matching (2620 events)
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Greenland

• Empirical detection (24 events)

• Full waveform (2620 events)

EVENTS
ICE LOSS
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Greenland: Spatiotemporal evolution

EVENTS
ICE LOSS
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Greenland: Comparison with GRACE data

Harig & Simons (2012)

Seismological observations

GRACE data inversion

NO INVERSION / DIRECT OBSERVATION INVERSION / DATA CORRECTION
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Low frequency signals from 
deep oceans volcanoes
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Low frequency volcanic tremors

Poli, Shapiro & Campillo (one day will be puslished!)
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Low frequency volcanic tremors: Location

Poli, Shapiro & Campillo (one day will be puslished!)

Location close to a seismic swarm (   )
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Low frequency volcanic tremors: Full waveform detection

Search for repeaters:

-Template matching using the 
waveforms for the 31st of July events

-From 2018 to August of 2019

New detections

217 events
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Low frequency volcanic tremors

Eruption

GPS

LFTs
GPS
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Low frequency volcanic tremors: Spectral properties

Eruption dynamics

∆f0~2%

Resonance freq.

f0 = n0(C) a/L



31

Low frequency volcanic tremors: Source properties

Fundamental mode Overtone

Fundamental mode

Overtone



Are these LFTs unique?

PapeetePapeete
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Conclusions (I)

• Preliminary search for signals is fast (one day one 

minute) and enrich earthquake catalogs

• Detections of signals beyond ‘regular’ earthquakes

• Primary detections for full waveform TM

Issues:

• Choice of detection function (better 

location/detection)

• Explore a larger frequency range

• Quality control of detections

• Relocation and depth resolution

• Separation of earthquakes from other signals
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Conclusions (II)

Detected signals provide information about (geo) 

physical processes

Catalog is open as it is the possibility to collaborate! 
piero.poli@univ-grenoble-alpes.fr
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Conclusions (III)

What if we do not have a reference signal?

ML
wait Friday L. Seydoux presentation

Generate signals from knowledge



(from Unflattened, Sousanis)

A FIXED VIEW POINT CAN BE A 
TRAP WHERE WE ONLY SEE 

WHAT WE ARE LOOKING FOR 
LP Volcanic event, 31st July 2018

THANKS
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Greenland

• Empirical detection (24 events)

• Full waveform (2620 events)


