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THE 2017 LANDSLIDE OF NUUGAASTIAQ, GREENLAND

Chao et al. SRL (2017)

BETWEEN 35 AND 51 MILLION M³ OF 
MATERIAL DIVED INTO THE SEA
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TSUNAMI WAVES GENERATED BY THE ROCKFALL

Chao et al. SRL (2017)

TRIGGERING TSUNAMI WAVES > 10 METERS
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Fourier spectrogram

 Seismogram (broadband)
Landslide
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BAND-LIMITED SEISMIC PRECURSORS REVEALED BY FOURIER SPECTROGRAM

Time (HH:MM)



 Seismogram (2 – 9 Hz)

COMPLEX SPECTRAL SHAPE PREVENTS CLUSTERING
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Fourier spectrogram

Landslide
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BAND-LIMITED SEISMIC PRECURSORS REVEALED BY FOURIER SPECTROGRAM



THE "SUPERVISED" WAY: TEMPLATE MATCHING DETECTIONS

Cumulative detections
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Landslide

Poli GRL (2017)

Bell GRL (2018)
Poli GRL (2017)
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Cumulative detections
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THE "SUPERVISED" WAY: TEMPLATE MATCHING DETECTIONS



CLUSTERING OF SEISMIC SIGNALS  WITH 
SCATTERING TRANSFORM FEATURES

Broadband 
continuous 
waveform

Feature 
extraction with 

scattering 
transform

Clustering with  
K-means
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IDEA OF A 
SCATTERING 
TRANSFORM

Input (broadband seismogram)

Scalogram
Morlet filter bank

Convolve
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IDEA OF A 
SCATTERING 
TRANSFORM

1st-order scattering coefficients

LowpassConvolve
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IDEA OF A 
SCATTERING 
TRANSFORM

LowpassConvolve

STABLE TO SMALL SIGNAL DEFORMATIONS

FINE SCALE INFORMATION REMOVED
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IDEA OF A 
SCATTERING 
TRANSFORM

Input data (broadband seismogram)

Convolve

5

Morlet filter bank #1

FINE SCALE INFORMATION 
RECOVERED AT SECOND ORDER

Morlet filter bank #2
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IDEA OF A 
SCATTERING 
TRANSFORM

2nd-order scattering coefficients

Convolve Lowpass

… THE SIGNAL STRUCTURE IS SCATTERED ACROSS THE NETWORK OF WAVELETS
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SCATTERING NETWORK DESIGN IS STRAIGHTFORWARD

"ACCURACY" "SPARSITY"

Filter bank #1 
Time scale: 2 second

Filter bank #2 
Time scale: 8 seconds
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Filter bank #3 
Time scale: 32 seconds

Andén & Mallat IEEE (2014)6
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SCATTERING NETWORK: AN ANALYTICAL CONVOLUTIONAL NEURAL NETWORK

Modulus

Scattering coefficients (features)

Wavelet bank  i

Lowpass filter �i

SCATTERING NETWORK

Neural network architecture

No learning

Straightforward design

Stable to small deformations

Multi time scales

GOOD CANDIDATE FOR  
SEISMIC SIGNAL FEATURES
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STABLE DESCRIPTION OF

Frequency content

Envelope duration

Envelope shape



EXAMPLE OF SCATTERING COEFFICIENTS
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2nd-order scattering coefficients (concatenated)

3rd-order scattering coefficients (concatenated)

Lo
g-

sc
al

e 
λ 1

Lo
g-

sc
al

e 
λ 1

Landslide



2nd-order scattering coefficients (concatenated)

3rd-order scattering coefficients (concatenated)

SCATTERING FEATURES EXTRACTION

K-MEANS CLUSTERING
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TIME SCATTERING VECTORS
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CLUSTER ANALYSIS OVER THE FULL DAY
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Cluster 1 (94.3%)

Cluster 2 (5%)

Cluster 3 (0.7%)

Silhouette analysis

OPTIMAL NUMBER OF CLUSTERS = 3

Proximity to cluster 1

Proximity to cluster 2

Proximity to cluster 3

100%At given time t: 

Broadband seismogram

Cluster analysis

Landslide



CLUSTER ANALYSIS OVER THE FULL DAY
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Noise

Seismicity #1

Seismicity #2

Silhouette analysis

TWO TYPES OF SEISMICITY REVEALED

Template matching detections (Poli, 2017)

Broadband seismogram

Cluster analysis

Within-clusters detectionsOPTIMAL NUMBER OF CLUSTERS = 3

TEMPLATE MATCHING 
DETECTION 92% 
INCLUDED INTO THE 
RED CLUSTER 

94.3% 
5% 
0.7%

Landslide



CLUSTER ANALYSIS WITH HIGHER NUMBER OF CLUSTERS
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Noise #1

Seismicity #1

Seismicity #2

Silhouette analysis

LOOKING FOR MORE CLUSTERS 

ONLY SPLITS THE NOISE CLUSTER

Template matching detections (Poli, 2017)

Noise #2

Broadband seismogram

Cluster analysis

Within-clusters detectionsOPTIMAL NUMBER OF CLUSTERS = 3
TWO TYPES OF SEISMICITY REVEALED
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BACKGROUND NOISE CLUSTER
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Noise

Seismicity #1

Seismicity #2

Clustered waveforms 
(94.3% of total data)

Extract cluster 

waveforms
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Cluster analysis
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Stack
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Noise

Seismicity #1

Seismicity #2

Clustered waveforms  
(0.7% of full data)

Landslide

SHORT-DURATION LOCAL SEISMICITY

Broadband seismogram

Cluster analysis

Within-clusters detections

18 DETECTIONS

< 10 SEC EVENTS

SHARP ENVELOPE

Landslide



SEISMICITY #1: LONG-DURATION SEISMIC REPEATORS
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Noise

Seismicity #1

Seismicity #2

Broadband seismogram

Cluster analysis

Within-clusters detections

Clustered waveforms 
(5% of full data)

140 DETECTIONS

>25 SEC PATTERN

HIGH SIMILARITY

Stack

Landslide



"SUPERVISED"  
TEMPLATE MATCHING 
DETECTIONS

Poli et al., 2017]. From quantitative analysis of these data, I report time and amplitude evolution of the
precursory signals, which permit to constrain the psychics governing the nucleation of landslides.

2. Data and Methods

To quantify the evolution of precursory signals (Figure 2), I exploit their similarity and use a coherence-based
method [Gibbons and Ringdal, 2006] aimed at counting how many events are occurring in the hours before
landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
stage provides 95 detections (Figures 3 and 4).

The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
Figure 4a I show the cumulative number of events as function of time. The first precursor event is observed at
~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to

Figure 3. Correlation coefficient trace, the red line is the threshold to declare a detection.

Figure 4. Time evolution of precursory signals. (a) Cumulative number of events as function of time. (b) The 95 detected events ranged as function of time. The
stack of these signals gives the (c) reference trace in which clear P and S waves are observed. (d) The amplitude time evolution is in clear agreement with the
exponential increment of events seen in Figure 4a.

Geophysical Research Letters 10.1002/2017GL075039

POLI SEISMIC PRECURSORS TO A LANDSLIDE 8834

WHAT WE NEED:  
FREQUENCY BAND

WAVEFORM HISTORY

Poli (2017)

PRECURSORY SIGNAL DETECTIONS COMPARISON

Poli et al., 2017]. From quantitative analysis of these data, I report time and amplitude evolution of the
precursory signals, which permit to constrain the psychics governing the nucleation of landslides.

2. Data and Methods

To quantify the evolution of precursory signals (Figure 2), I exploit their similarity and use a coherence-based
method [Gibbons and Ringdal, 2006] aimed at counting how many events are occurring in the hours before
landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
stage provides 95 detections (Figures 3 and 4).

The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
Figure 4a I show the cumulative number of events as function of time. The first precursor event is observed at
~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to

Figure 3. Correlation coefficient trace, the red line is the threshold to declare a detection.

Figure 4. Time evolution of precursory signals. (a) Cumulative number of events as function of time. (b) The 95 detected events ranged as function of time. The
stack of these signals gives the (c) reference trace in which clear P and S waves are observed. (d) The amplitude time evolution is in clear agreement with the
exponential increment of events seen in Figure 4a.

Geophysical Research Letters 10.1002/2017GL075039
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Stack

WHAT WE LEARN:  
FREQUENCY BAND 

WAVEFORM HISTORY

UNSUPERVISED 
SCATTERING TRANSFORM 
DETECTIONS

Stack

Waveforms

Waveforms
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CONCLUSIONS
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• Scattering network 

— provides stable features of seismic waveforms


— describes frequency content, envelope duration and shape 


— architecture is straightforward 


• Unsupervised detections and clustering revealed 

— Background noise cluster


— Long-duration seismicity including previous template matching detections 


— Short-duration local seismicity

PERSPECTIVES & ONGOING WORK
• Move to array scattering transform (belief propagation) 

• Application to other kind of seismic activity (e.g. tremors, LFE, …)
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PRINCIPAL COMPONENT VIEW OF THE CLUSTERS

X

1.2

1.6

0 0.4 0.8 1.2

0

0.4

0.8

First principal component

Se
co

nd
 p

ri
nc

ip
al

 c
o

m
p

o
ne

nt 1.2

1.6

0 0.4 0.8 1.2

0

0.4

0.8

First principal component

Se
co

nd
 p

ri
nc

ip
al

 c
o

m
p

o
ne

nt

Noise #1

Seismicity #1

Seismicity #2

Noise #2

Noise

Seismicity #1

Seismicity #2

Looking for 3 clusters Looking for 4 clusters



CLUSTER ANALYSIS OVER THE FULL DAY

X

Template matching  
detections (Poli, 2017)

Cumulative detections

TEMPLATE MATCHING DETECTION 88% 
INCLUDED INTO THE RED CLUSTER 

Noise

Seismicity #1

Seismicity #2

Cluster analysis

Within-clusters detections



"PARENT" NORMALIZATION OF THE SCATTERING COEFFICIENTS

÷

1st-order normalized scattering coefficients

2nd-order normalized scattering coefficients

Divide

÷

1st-order Scattering coefficients 
of absolute signal

1st-order scattering coefficients

2nd-order scattering coefficients

HIGH-AMPLITUDE

SIGNAL DOMINATES

SIGNALS DESCRIBED 
WITHOUT AMPLITUDE

Siffre et al. (2014)X


