An overview of the use of laser ultrasonics to estimate the elastic properties of solid materials

Kasper van Wijk, Jonathan Simpson, Ludmila Adam, Jami Shepherd, James Loveday, Sam Hitchman

> Physical Acoustics Laboratory and Dodd Walls Centre Department of Physics, University of Auckland

> > September, 2019

van Wijk Cargese, 2019 2/26

From Cargese and FIFA 2002....

Pos	Team [V*T*E]	Pld	W	D	L	GF	GA	GD	Pts	Qualification	
1	Denmark	3	2	1	0	5	2	+3	7	Advance to knockout stage	
2	Senegal	3	1	2	0	5	4	+1	5		
3	💻 Uruguay	3	0	2	1	4	5	-1	2		
4	France	3	0	1	2	0	3	-3	1		

From Cargese and FIFA 2002....

Po	os Team [v·	T'E] Plo	W	D	L	GF	GA	GD	Pts	Qualification	
1	1 Denmark	3	2	1	0	5	2	+3	7	Advance to knockout stage	
2	2 Senegal	3	1	2	0	5	4	+1	5		
3	3 💻 Uruguay	3	0	2	1	4	5	-1	2		
4	France	3	0	1	2	0	3	-3	1		

(Klauss Littmann, 2019)

van Wijk Cargese, 2019 2/26

Ар	plicati	ons		ice physics							
ima Auc	<mark>ging/mo</mark> i kland Vo	n <mark>itoring</mark> Icanic F	ield	fruit/timber characterization							
		res	servoir	ir characterisation medical imaging							
Μ	ethods	5		full waveform sonic logging							
						aser ult	rasound				
su bo to	urface an ody wave mograph	d e ny	а	coustics	Resonant photo- Ultrasound acoustics Spectroscopy						
10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵ freque	10 ⁶				

Resonance on ice (with contacting transducers)

Resonance on ice (with contacting transducers)

Detecting small changes in (man-made poly-crystalline) ice

Vaughan et al. (The Cryosphere, 2016)

Elastic constants of ice

Attenuation in ice

- ▶ From -20 to -5 Celsius, we see *partial melt* in the pores
- This partial melt:
 - ▶ has an effect on the elastic parameters, particularly c_{11} (v_p),
 - an even bigger effect on *attenuation* (mostly Q_p)
- The quality factor Q is notoriously hard to estimate with seismic data, but has real potential for monitoring (fluids)

Non-contacting ultrasound with lasers

Non-contacting ultrasound with lasers

Rotation and translation under computer control for source, receiver, and the sample

Waves in two (approximate) spheres

Physics Today, October 2017

The modes of a sphere

The modes of a sphere

Apple-watching for 15 days

Postharvest Biology and Technology, 2016

Laser Ultrasound, controlling pressure and temperature

The Alpine Fault, New Zealand

Rotational scan under pressure

Pressure dependence

van Wijk Cargese, 2019

17/26

Rose diagrams

Anisotropy as a function of distance to the Alpine Fault

19/26

Conceptual cross-section of the Alpine Fault

van Wijk Cargese, 2019 20/26

The geothermal gradient of the Alpine Fault

Geothermal gradient in fault zones

Fibre-optic temperature (and strain) sensing

- Estimates of v_p(P, T) in Alpine Fault rocks show the importance of fractures and the geothermal gradient.
- Furthermore, this information can be used to
 - 1. Seismic imaging
 - 2. Fault strength

Outlook of (laboratory) wave propagation research

- Elastic waves are sensitive probes of the physical properties of many solids:
 - Earth
 - timber
 - ► fruit
 - ice
 - the human body, others ...

and

Outlook of (laboratory) wave propagation research

- Elastic waves are sensitive probes of the physical properties of many solids:
 - Earth
 - timber
 - fruit
 - ice
 - the human body, others ...

and

- For applications in geophysics, *seismic* waves are sensitive to many things:
 - composition
 - pressure
 - temperature
 - fractures
 - water content, others ...

Outlook of (laboratory) wave propagation research

- Elastic waves are sensitive probes of the physical properties of many solids:
 - Earth
 - timber
 - fruit
 - ice
 - the human body, others ...

and

- For applications in geophysics, *seismic* waves are sensitive to many things:
 - composition
 - pressure
 - temperature
 - fractures
 - water content, others ...

With laser ultrasound, we are poised to learn more about how each of these parameters control (seismic waves in and near) faults