

Passive Imaging & Monitoring in Wave Physics

New techniques in seismic tomography and joint inversion

Huajian Yao

University of Science and Technology of China (USTC)

with Hongjian Fang, Chuanming Liu, Shaoqian Hu, Haijiang Zhang, Hsin-Ying Yang (USTC), Rob van der Hilst (MIT), Cliff Thurber (UW Madison), Yehuda Ben-Zion (USC)

2019.9.16 Cargèse

Outline

- Joint body & surface wave traveltime tomography for 3-D Vp, Vs, and Vp/Vs models: methodology and application to NE Tibet
- Direct inversion of 3-D azimuthal and radial anisotropy from surface wave traveltime data: methodology and application to SE Tibet

classic datasets + improved techniques → reliable and useful models

Differences in tomographic models from different datasetsbut we only have one true model!

SE Tibet

Huang et al. (2015)

Different data: different constraints on the model Joint seismic inversion: quest for the true model

Joint inversion: avoid non-uniqueness of inversion using single dataset and get more reliable models

Why joint inversion using body wave + surface wave traveltimes?

Complementary strengths

• 1. Different depth and horizontal sensitivities

West et al. (2004, GRL)

Why joint inversion using body wave + surface wave traveltimes?

• 2. Different model parameter sensitivity

Background: surface wave tomography

Fang, Yao, Zhang et al. (2015, GJI)

Direct inversion of 3-D Vs model from dispersion data with period dependent ray tracing

code available at https://github.com/HongjianFang/DSurfTomo

Applications of DSurfTomo

- Regional scale (a few hundred to thousand km→ crustal structure): Tibetan plateau, SW Tibet, SE China and Taiwan Straight, eastern China ...
- Local scale (~ ten to hundred km→shallow crust): Tanlu fault zone, Hefei City, Jinan City, Taipei Basin, Binchuan Basin in SW China,
- Exploration scale (several km→near surface): shale gas production field, gas storage place,

Joint body & surface wave traveltime tomography for 3-D Vp and Vs models

Body wave Traveltime tomo

Direct Surface wave Traveltime tomo

$$\begin{bmatrix} \mathbf{G}_{V_p}^{SW} & \mathbf{G}_{V_s}^{SW} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{m}_p \\ \Delta \mathbf{m}_s \end{bmatrix} = \mathbf{d}^{SW}$$

 $\begin{bmatrix} \mathbf{G}_{H}^{T_{p}} & \mathbf{G}_{Vp}^{T_{p}} & \mathbf{0} \\ \mathbf{G}_{H}^{T_{s}} & \mathbf{0} & \mathbf{G}_{Vs}^{T_{s}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{H} \\ \Delta \mathbf{m}_{p} \\ \Delta \mathbf{m}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{d}^{T_{p}} \\ \mathbf{d}^{Ts} \end{bmatrix}$

period-dependent SW ray tracing (Fang, Yao, Zhang et al. 2015, GJI.)

Joint body & surface waves tomo

$$\begin{bmatrix} \mathbf{G}_{H}^{T_{p}} & \mathbf{G}_{Vp}^{T_{p}} & \mathbf{0} \\ \mathbf{G}_{H}^{T_{s}} & \mathbf{0} & \mathbf{G}_{Vs}^{T_{s}} \\ \mathbf{0} & \alpha \mathbf{G}_{Vp}^{SW} & \alpha \mathbf{G}_{Vs}^{SW} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{H} \\ \Delta \mathbf{m}_{p} \\ \Delta \mathbf{m}_{s} \end{bmatrix} = \begin{bmatrix} \mathbf{d}^{T_{p}} \\ \mathbf{d}^{Ts} \\ \alpha \mathbf{d}^{SW} \end{bmatrix}$$

(Fang, Zhang, Yao et al., JGR 2016)

Joint body & surface wave traveltime tomography for 3-D Vp and Vs models

 λ_1, λ_2 : 3-D spatial smoothing λ_3, κ : Vp/Vs ratio prior constraints $(\mathbf{m}_p + \Delta \mathbf{m}_p) = \kappa(\mathbf{m}_s + \Delta \mathbf{m}_s)$

(Fang, Zhang, Yao et al., JGR 2016)

Joint Inversion for 3D Vp/Vs ratio

Fang, Yao, Zhang et al. (GJI, 2019)

Add smoothing and damping directly to Vp/Vs to stabilize the inversion of 3-D Vp/Vs → lithology, partial melting?

Application to NE Tibetan Plateau

Body wave traveltime data: P picks: ~ 300,000 S picks: ~ 290,000 (from Shunping Pei) Surface wave traveltime data: Rayleigh wave phase velocity dispersion: ~ 51,000 (10 to 41 s) (from Hongyi Li)

Previous noise tomography results

prominent low-velocity zone in the middle crust of Qiangtang and Songpan-Ganze Terranes; no clear evidence of northeastward crustal flow to the Qilian Orogen

Joint inversion: synthetic tests

Vp

Vs

Output model for Vp/Vs

Horizontal slices at different depths

Horizontal slices at different depths

Vp/Vs model at different depths

1.7 1.8 Vp/Vs

Fang et al. (in prep)

Outline

- Joint body & surface wave traveltime tomography for 3-D Vp, Vs, and Vp/Vs models: methodology and application to NE Tibet
- Direct inversion of 3-D azimuthal and radial anisotropy from surface wave traveltime data: methodology to SE Tibet

Azimuthal Anisotropy

HTI medium: horizontal sym. axis

Radial Anisotropy

VTI medium: vertical sym. axis

Causes for seismic anisotropy: cracks, layering, shape or lattice preferred orientation

Methods for seismic anisotropy: local S-wave or XKS splitting, receiver functions (Pms), body wave traveltimes, surface wave dispersion, etc

Classical representation of Rayleigh-wave and shear-wave velocity azimuthal anisotropy

Shear-wave velocity:

$$\hat{\beta}_{SV} \approx V_{SV} \left(1 + \frac{G_c}{2L} \cos 2\psi + \frac{G_s}{2L} \sin 2\psi \right)$$
$$= V_{SV} \left[1 + \Lambda_{SV} \cos 2(\psi - \phi_F) \right]$$

Smith & Dahlen (1973) Montagner & Nataf (1986)

1-D depth sensitivity kernels

Normal mode / surface wave mode theory

Weak azimuthal anisotropy : $V_{SV} \approx V_{SV} \left(1 + \frac{G_c}{2L} \cos 2\psi + \frac{G_s}{2L} \sin 2\psi\right)$

Traditional two-step inversion for Vs azimuthal anisotropy from Rayleigh waves

Traditional two-step inversion for Vs azimuthal anisotropy from Rayleigh waves

Direct inversion for 3-D Vs azimuthal anisotropy based on raytracing from dispersion data

Step 1. All dispersion data \rightarrow 3-D isotropic Vs

Fang, Yao, et al. (2015, GJI)

Step 2. All traveltime residual data \rightarrow 3-D isotropic and azimuthally anisotropic Vs

Based on the 3-D ref. model from Step 1

$$\delta t_{i}(\omega) = t_{i}^{obs}(\omega) - t_{i}^{ref}(\omega) \approx \sum_{k=1}^{K} \frac{-\mu_{ik}}{(c_{0}^{k}(\omega))^{2}} \left(\delta c_{k}(\omega) + a_{1}^{k}(\omega) \cos 2\psi + a_{2}^{k}(\omega) \sin 2\psi \right)$$

$$= \sum_{k=1}^{K} \frac{-\mu_{ik}}{(c_{0}^{k}(\omega))^{2}} \left(\delta c_{k}^{ETI}(\omega) + \delta c_{k}^{AA}(\omega, \psi) \right).$$

$$\delta c_k^{ETI}(\omega) = \int_0^\infty \left(\frac{\partial c_k(\omega)}{\partial \alpha_k(z)} \delta \alpha_k(z) + \frac{\partial c_k(\omega)}{\partial \beta_k(z)} \delta \beta_k(z) + \frac{\partial c_k(\omega)}{\partial \rho_k(z)} \delta \rho_k(z) \right) dz,$$

$$\begin{split} \delta c_k^{AA}(\omega) &= \int_0^\infty \left\{ \left(B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_c^k \frac{\partial c_k(\omega)}{\partial L_k} \right) cos 2\psi + \left(B_s^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} \right) sin 2\psi + (B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} \right) sin 2\psi + (B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} \right) sin 2\psi + (B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} \right) sin 2\psi + (B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} \right) sin 2\psi + (B_c^k \frac{\partial c_k(\omega)}{\partial A_k} + G_s^k \frac{\partial c_k(\omega)}{\partial L_k} + G$$

Step 2. All traveltime residual data \rightarrow **3-D isotropic and azimuthally anisotropic Vs** some simplifications and finally ... $\delta t_i(\omega) = \sum_{k=1}^K \frac{-\mu_{ik}}{(c_k^k(\omega))^2} \sum_{j=1}^J \left\{ \left[\left(\int_{z_j}^{z_{j+1}} \frac{\partial c_k(\omega)}{\partial \alpha_k(z)} \, dz \right) R_\alpha(z_j) + \left(\int_{z_j}^{z_{j+1}} \frac{\partial c_k(\omega)}{\partial \beta_k(z)} \, dz \right) + \right] \right\}$ $\left(\int_{z_{j}}^{z_{j+1}} \frac{\partial c_{k}(\omega)}{\partial \rho_{k}(z)} dz\right) R_{\rho}(z_{j}) \left[\delta\beta_{k}(z_{j}) + \eta_{ik} \left[\left(\int_{z_{j}}^{z_{j+1}} \frac{\partial c_{k}(\omega)}{\partial A_{k}(z)} dz\right) A_{k}(z_{j}) + \left(\int_{z_{j}}^{z_{j+1}} \frac{\partial c_{k}(\omega)}{\partial L_{k}(z)} dz\right) L_{k}(z_{j})\right] \frac{G_{c}^{\kappa}(z_{j})}{L_{k}(z_{j})} + \frac{G_{c}^{\kappa}(z_{j})}{G_{c}^{\kappa}(z_{j})} dz$ $\xi_{ik} \left[\left(\int_{z_j}^{z_{j+1}} \frac{\partial c_k(\omega)}{\partial A_k(z)} \, dz \right) A_k(z_j) + \left(\int_{z_j}^{z_{j+1}} \frac{\partial c_k(\omega)}{\partial L_k(z)} \, dz \right) L_k(z_j) \right] \frac{G_s^k(z_j)}{L_k(z_j)} \right\},$ → d = G m $\mathbf{m} = \left[\Delta \beta_1(z_j) \dots \Delta \beta_1(z_J) \dots \Delta \beta_K(z_J) \frac{G_c^1(z_1)}{L_1(z_1)} \dots \frac{G_c^1(z_J)}{L_1(z_I)} \dots \frac{G_c^K(z_J)}{L_K(z_J)} \frac{G_s^1(z_1)}{L_1(z_1)} \dots \frac{G_s^1(z_J)}{L_1(z_I)} \dots \frac{G_s^K(z_J)}{L_K(z_J)} \right]^T$ Inversion matrix: $\begin{array}{ccc} \mathbf{U}_{iso} & \mathbf{U}_{AA} \\ \lambda_1 \mathbf{L}_{iso} & \mathbf{0} \\ \mathbf{0} & \lambda_2 \mathbf{L}_{idd} \end{array} \begin{bmatrix} m_{iso} \\ m_{AA} \end{bmatrix} = \begin{bmatrix} a \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

Synthetic examples

DAzimSurfTomo: Application to SE Tibet

Vs model in the crust and uppermost mantle

Liu, Yao, Yang et al. (JGR, 2019)

Comparison of 2-D phase v maps

1° x 1° checkerboard model

(Chang et al, 2016)

Apparent differences in crust and uppermost mantle azim. aniso.

Liu, Yao, Yang et al. (JGR, 2019)

Direct inversion for 3-D Vsh and Vsv

Rayleigh
$$\left(\begin{array}{c} \Delta \mathbf{T}_{R} \\ \Delta \mathbf{T}_{L} \end{array} \right) = \left(\begin{array}{c} \mathbf{G}_{sv} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{sh} \end{array} \right) \left(\begin{array}{c} \Delta \mathbf{V}_{sv} \\ \Delta \mathbf{V}_{sh} \end{array} \right)$$

3-D inversion: spatial smoothing added on ΔV_{sh} & ΔV_{sv}

Radial anisotropy : direct division \rightarrow large uncertainty

Direct inversion for 3-D Vs radial anisotropy

$$\gamma = \frac{V_{sh}}{V_{sv}} \implies \Delta \mathbf{V}_{sh} = \gamma \cdot \Delta \mathbf{V}_{sv} + \mathbf{V}_{sv} \cdot \Delta \gamma$$

$$\begin{pmatrix} \Delta \mathbf{T}_R \\ \Delta \mathbf{T}_L \end{pmatrix} = \begin{pmatrix} \mathbf{G}_{sv} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{sh} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{V}_{sv} \\ \Delta \mathbf{V}_{sh} \end{pmatrix}$$

$$\begin{pmatrix} \Delta \mathbf{T}_R \\ \Delta \mathbf{T}_L \end{pmatrix} = \begin{pmatrix} \mathbf{G}_{sv} & \mathbf{0} \\ \gamma \cdot \mathbf{G}_{sh} & \mathbf{V}_{sv} \cdot \mathbf{G}_{sh} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{V}_{sv} \\ \Delta \gamma \end{pmatrix}$$
More stable: spatial smoothing directly added

$$\left(\frac{V_{sh}+V_{sv}}{2}, \frac{2(V_{sh}-V_{sv})}{V_{sh}+V_{sv}}\right) \bigstar \left(V_{sv}\frac{\gamma+1}{2}, \frac{2(\gamma-1)}{\gamma+1}\right)$$

DRadiSurfTomo: application to SE Tibet

Synthetic examples: 3-D radial anisotropy

Direct inversion for radial aniso. ($\Delta V_{sv}, \Delta \gamma$)

Hu, Yao, Huang (submitted to JGR)

3-D radial anisotropy in the upper and middle crust

Hu, Yao, Huang (submitted to JGR)

Conclusions

- Developed the joint inversion method of body & surface wave traveltime → more reliable 3-D Vp, Vs, and Vp/Vs models. Future work will include the station-based RFs and ZH data.
- Developed direct inversion methods for 3-D azimuthal and radial anisotropy from surface wave traveltime data. Future work will include body wave traveltimes for 3-D joint anisotropy inversion.

Thank you!

hjyao@ustc.edu.cn http://yaolab.ustc.edu.cn

DSurfTomo package download: https://github.com/HongjianFang/DSurfTomo DAzimSurfTomo package download: https://github.com/Chuanming-Liu/DAzimSurfTomo DBodySurfTomo & DRadiSurfTomo packages in progress